Oxidative-Mechanical Stress Signals Stem Cell Niche Mediated Lrp5

Osteogenesis in eNOS^{−/−} null mice

Nalini M. Rajamannan, MD^{1,2}

Short Title: Mechanisms of Aortic Valve Calcification

From the ¹Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois

Address correspondence to:

Nalini M. Rajamannan, MD
Northwestern University
303 E. Chicago
Suite 12-717
Chicago, IL 60611
nrajamannan@gmail.com
Abstract:

Introduction: Calcific aortic valve disease (CAVD) is the most common indication for valve surgery in the USA. This study hypothesizes that calcific aortic valve disease develops secondary to Wnt3a/Lrp5 activation via oxidative-mechanical stress in eNOS null mice.

Methods: eNOS$^{-/-}$ mice were tested with experimental diets including a control (n=20), cholesterol (n=20), cholesterol + Atorvastatin (n=20). After 23 weeks the mice were tested for the development of aortic stenosis by Echo, Histology, MicroCT, and RTPCR for bone markers. In vitro studies measured Wnt3a secretion from aortic valve endothelial cells and confirmed oxidative stress via eNOS activity. Anion exchange chromatography was performed to isolate the mitogenic protein. Myofibroblast cells were tested to induce bone formation.

Results: Cholesterol treated eNOS mice develop severe stenosis with an increase in Wnt3a, Lrp5, Cbfa1, (3-fold increase(p<0.0001) in the bicuspid versus tricuspid aortic valves. Secretion of Wnt3a from aortic valve endothelium in the presence of abnormal oxidative stress was correlated with diminished eNOS enzymatic activity and tissue nitrite levels. Initial characterization of the architecture for a stem cell nice was determined by protein isolation using Anion-Exchange Chromatography and cell proliferation via thymidine incorporation. Osteoblastogenesis in the myofibroblast cell occurred via Lrp5 receptor upregulation in the presence of osteogenic media.

Conclusion: Targeting the Wnt3a/Lrp5 pathway in valve calcification and activation of osteogenesis is via an oxidative-mechanical stress in CAVD. These findings provide a foundation for treating this disease process by targeting the cross talk mechanism in a resident stem cell niche.

Keywords: Valvular Heart Disease, Lipids, eNOS, Lrp5
Calcific Aortic Valve Disease is the most common indication for surgical valve replacement. For years this disease was thought to be a passive degenerative phenomenon. However, the cellular mechanisms involving this disease process are emerging. There are two forms of calcific aortic valve disease, tricuspid aortic valve disease and bicuspid aortic valve disease. Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly, having a prevalence of 0.9 to 1.37% in the general population\cite{Roberts and Ko, 2005}. Bicuspid aortic valve disease occurs more frequently in patients who are undergoing surgical valve replacement. Understanding of the cellular mechanisms of the mechanisms of aortic valve lesions will present further understanding towards slowing disease progression. Currently, there are three fundamental cellular mechanisms defined in the development of aortic valve disease: 1) oxidative stress via traditional cardiovascular risk factors\cite{Aikawa et al., 2007; Drolet et al., 2003; Rajamannan et al., 2005a; Rajamannan et al., 2002b; Weiss et al., 2006}\cite{Makkena et al., 2005; Rajamannan et al., 2003a; Rajamannan et al., 2002a; Rajamannan et al., 2002b; Rajamannan et al., 2005b; Weiss et al., 2006}, 2) cellular proliferation\cite{Rajamannan et al., 2001b} and 3) osteoblastogenesis in the end stage disease process\cite{Mohler et al., 2001; Rajamannan et al., 2003b}.

Previously, the Wnt/Lrp5 signaling pathway has been identified as a signaling mechanism for cardiovascular calcification\cite{Caira et al., 2006; Rajamannan et al., 2005a; Shao et al., 2005}. This study tests the hypothesis\cite{Rajamannan, 2011a} that the cellular architecture resident in the valve is necessary to mediate the disease phenotype via two co-regulatory mechanisms: first an endothelial-mesenchymal cross-talk oxidative stress signal, and second a lipid-mechanical force signal to regulate the Lrp5 receptor upregulation in the aortic valve myofibroblast cell. The study will examine these two mechanisms by: 1) an \textit{in vivo} mouse model, 2) characterize the secretion of a Wnt3a from the aortic valve endothelium in the presence of lipids and lipid lowering medication, 3)
measures osteogenic activity in the myofibroblast cell and 4) isolates the mitogenic activity to prove the cell-cell signaling cross talk mechanism.

Materials and Methods:

eNOS−/− mouse model of Bicuspid vs. Tricuspid Aortic Valve Disease

eNOS−/− mice (B6.129P2-Nos3tm1Unc/J) were purchased from Jackson Laboratories (Bar Harbor, Maine). Mice age 6-8 weeks were purchased from Jackson Laboratories. These mice were assigned to a control (N=60), a 0.2% cholesterol (w/w) diet (Harlan Teklad 88137), (N=60) and a 0.2% cholesterol (w/w) diet (Harlan Teklad 88137) plus atorvastatin 0.1% (v/v) in drinking water (N=60). All animals were fed ad libitum for 23 weeks. Control mice were fed a standard diet. Following this 23-week period, the mice were anesthetized using inhalation Isoflurane for the echocardiography studies and then euthanasia with inhalation CO₂. All experiments were performed in an animal facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, Inc. (ACUC- A3283-01, 1-08-382). Immediately after dissection from the heart, and fixed in 10% buffered formalin for 48 hours, transferred to 70% Ethanol and then embedded in paraffin. Valves were also snap frozen in liquid nitrogen and stored in -80 degree freezer for gene expression experiments. Paraffin embedded sections (6µm) were cut and prepped for histopathologic exam.

Visual Sonics Mouse Echocardiography

Comprehensive transthoracic echocardiograms were performed using the Visual Sonics Echocardiographic Machine (Toronto, CA). Standard doppler measurements of left ventricular outflow tract and aortic valve from multiple windows to obtain the maximum velocity were recorded and the mean gradient, the peak velocity and aortic valve area were measured and calculated as previously described[Rajamannan, 2011c]. Screening for the bicuspid phenotype
found a similar prevalence to previously published data [Lee et al., 2000]. Table 1 demonstrates the echocardiographic features of the two different mouse phenotypes.

Micro-CT

After fixing in formalin, the valves were examined using a Scanco MicroCT-40 system operated at 45 kV. Sampling was with ~8 μm voxels (volume elements) and maximum sensitivity (1000 projections, 2048 samples and 0.3 sec/projection integration [Rajamannan et al., 2003b]) N=10 valves total were tested [Rajamannan et al., 2005a; Rajamannan et al., 2003b].

Bone Tag Injection and Li-Cor Molecular Imaging

To measure rates of bone turnover we inject the eNOS−/− mice with Bone tag 48 hours prior to sacrifice. The Bone Tag incorporates in areas of active bone turnover [Kovar et al., 2007; Westerlind et al., 1997]. The system measures near infrared fluorochromes to assess newly forming bone in tissues. Important criteria for effective optical imaging fluorochromes include: excitation and emission maxima in the Near Infrared Range (NIR) between 700-900 nm; high quantum yield; chemical and optical stability; and suitable pharmacological properties including aqueous solubility, low non-specific binding, rapid clearance of the free dye and low toxicity [Kovar et al., 2007]. We injected the eNOS with the 3 different diets with the IRDye 800 CW dye (Bone Tag Probe-conjugated tetracycline derivative), and measured the optimal imaging of the mice testing first the entire mouse, and then the individual organs. We found that the 48 hour injections provided the most specific data allowing for the proper wash out period for the dye. (24, 48 and 72 hours were tested for the protocol of N=60 mice.)
In vitro model Valvular Fibroblast Cells and Aortic Valve Endothelial Porcine Cells

Valvular fibroblast cells and endothelial cells are obtained from mature Yorkshire pigs and isolated from the cardiac aortic valves by collagenase digestion [Rajamannan et al., 2001a]. Cells will be cultured in medium 199 with 10% (v/v) heat-inactivated fetal bovine serum at 37°C in a humidified atmosphere of 5% CO₂ in air. Cells are utilized between the 3rd and 10th passage. Conditioned media from aortic valve endothelial cells was produced by treating the cells for 24 hours with low density lipoprotein (LDL) (10 ng/ml) (Intracell, Fredrick, MD), LDL + atorv (10⁻⁶M), and atorv (10⁻⁶M) alone. The conditioned media was then tested directly on the aortic valve myofibroblast cells for 18 hours in quadruplicate wells and pulsed with 1 uCi/well of tritiated thymidine for the final 4 hours of the incubation. Dose response experiments for LDL and atorvastatin were performed, and the data shown is the peak dose for these effectors [Rajamannan et al., 2005a]. Newly synthesized DNA was identified by incorporation of radioactivity into acid-precipitated cellular material [Rajamannan et al., 2001a]. Platelet-Derived Growth Factor (PDGF) will serve as a positive control for proliferation, and incubation in serum-free medium alone as a negative control (N=12 replicates were performed). Western Blot analysis was also performed on the different treatment groups as outlined in the Western Blot methods (N=3 replicates).

Thymidine Assay

Cardiac valve fibroblast cells will be grown to confluence in 24-well plates and then growth-arrested by incubation in serum-free medium for 24 hours. The factors to be tested are then incubated with cells for 18 hours in quadruplicate wells and pulsed with 1 uCi/well of tritiated thymidine for the final 4 hours of the incubation. Newly synthesized DNA will be identified by incorporation of radioactivity into acid-precipitated cellular material [Rajamannan et al., 2001a].
Western Blot

Western blot analysis was performed as previously described [Rajamannan et al., 2005a]. [Anti-Dkk1 (Chemicon, International, Temecula, CA), Wnt3a (R and D systems, Minneapolis), and Anti-Caveolin-1 and Anti-eNOS(ABCAM, Cambridge, MA)]. We performed (N=3) replicates on each Western Blot experiment, and show a representative experiment for the data.

Semi-quantitative Reverse Transcriptase Polymerase Chain Reaction

Immediately after dissection from the heart, the leaflets from each aortic valve and the femurs were frozen in liquid nitrogen for RNA extraction. Messenger RNA was isolated using MicroFast Track (Invitrogen), and 4 micrograms of RNA was used for semi-quantitative reverse transcriptase polymerase chain reaction (RTPCR) analysis. RTPCR was performed to determine expression levels of Wnt3a (326bp), Lrp5 (667 bp), Runx2(289 bp), osteopontin(102 bp), cyclin(151 bp), and GAPDH(451bp) as previously described[Caira et al., 2006].

Immunogold Electron Microscopy

The valve leaflets were fixed in 4% formaldehyde plus 0.2% glutaraldehyde in phosphate buffer overnight, rinsed in phosphate buffer, partially dehydrated to 80% ethanol and embedded in LR White resin. Thin sections (~0.1μm) were mounted on nickel grids and labeled with an antibody to eNOS and caveolin1 (Abcam, Cambridge, MA). Prior to labeling, the sections were treated with phosphate buffered saline with .05% Tween 20 (PBS-T), 1% (w/v) glycine and 2% (w/v) normal goat serum for 15 minutes. Sections were then incubated in undiluted primary antibody for 2 hours at room temperature. After rinsing extensively in PBS-T, the sections were incubated for 60 minutes in goat anti-mouse antibody conjugated to 10 nm gold diluted 1:50 in PBS-T. Grids were rinsed in PBS-T, rinsed in water, and dried. Sections were examined after staining with uranyl acetate and lead citrate.
Anionic Mitogen Isolation

Cardiac valve endothelial cells and myofibroblast cells were isolated as previously described [Rajamannan et al., 2005a]. The endothelial cells were cultured on microcarrier beads to increase the surface area so as to increase the concentration of the transformed activity in the conditioned media. The conditioned media from these cells were chromatographed on diethylaminoethyl-dextran (DEAE-Sephadex, Sigma) as described in the preliminary results. Briefly, the resin was swollen and equilibrated with 0.015 M HEPES, Ph7.40. The conditioned media was dialyzed into the same buffer, 1.5 ml applied to a 0.5 x 1.0 cm DEAE-Sephadex column, and allowed to bind as a slurry at 4°C. The activity is eluted with a 15 ml gradient of 0 to 0.5 M NaCl, both in 0.015 M HEPES at pH 7.40. Fractions of 1 ml in size are collected and equilibrated with serum-free medium by a combination of dialysis at 4°C (two dialysate changes over three hours) and desalted over Bio-gel P-6DG 0.8 ml columns (Biorad, Richmond, CA). The fractions were then added to the myofibroblast media and the affects on cell proliferation by the thymidine mitogen assay. Gel filtration was used with a Sephadex G-100 (Sigma) to further purify the activity.

Adenoviral vectors and viral delivery

Replication-incompetent serotype 5 adenoviral vectors, driven by the cytomegalovirus immediate-early promoter, were generated, propagated, and purified as previously described [Chen et al., 1997]. Viral titers were determined by plaque assay. Briefly, HEK-293 cells were plated on 60-mm tissue culture plates and allowed to become confluent. Dilutions (10^-9-10^-11 M) of the virus were incubated with the cells for 1 h. The virus was then aspirated, and the cells were overlayed with 1% agarose in DMEM and 2% fetal bovine serum (FBS). Overlaying was repeated every 4-5 days to maintain the cultures. Viral plaques were counted every other day starting with day 7 after infection until plaque numbers stopped increasing. The vectors used in these studies encoded a cDNA sequence for bovine eNOS (AdCMVeNOS) or, alternatively, Escherichia coli β-gal reporter
gene (AdCMVLacZ) in place of the deleted E1 region of the virus. After 24 h in culture, cells were washed with PBS and transduced with PBS and 0.5% albumin containing 100 multiplicity of infection of AdCMVLacZ or AdCMVeNOS for 1 h. The vector solution was then aspirated, cells were washed with PBS, and complete culture medium was replaced. At 24 h after transduction, cells were prepared for thymidine cell proliferation assays.

NOS Activity Assay

The conversion of L-[3H]arginine to L-[3H]citrulline was used to determine NOS activity. Briefly, aortic valve endothelial cells were homogenized in a lysis buffer identical to that described for Western blotting. Samples were incubated with a buffer containing 1 mM NADPH, 3 μM tetrahydrobiopterin, 100 nM calmodulin, 2.5 mM CaCl2, 50 mM L-valine, 10 μM L-arginine, and L-[3H]arginine (0.2 μCi) at 37°C. To determine NOS activity, duplicate samples were incubated for 20 min in the presence and absence of 1 mM N-G-nitro-L-arginine methyl ester (L-NAME) or vehicle[Shah et al., 1997]. The reaction was terminated by the addition of 1 ml of cold stop buffer (20 mM HEPES, 2 mM EDTA, and 2 mM EGTA, pH 5.5), and the reaction mix was applied to a Dowex AG 50WX-8 resin column. Radiolabeled counts per minute of L-citrulline generation were measured and used to determine L-NAME-inhibited NOS activity.

Measurement of NO production

After 24 h in culture, aortic valve endothelial cells were transduced treated with oxidized LDL with and without Atorvastatin. The day after transduction, eNOS-derived NO was stimulated by incubating cells in DMEM with 1 mM L-arginine and 10 μM of the eNOS agonist A-23187 or an equal volume of vehicle in place of A-23187. After 1 h, the medium was collected and analyzed for the stable NO byproduct, nitrite, using NO-specific chemiluminescence (Seivers NOA). Cells were
then lysed for protein measurement using the Lowry assay. NO-specific chemiluminescence was performed [Shah et al., 1999]. A standard curve was generated using known nitrite standards. Samples were examined in duplicate, and nitrite readings were normalized for cellular protein.

Mineralization Assay

Porcine valvular myofibroblast cells were grown for extended periods (42 days) in Osteogenic Media (Stem Cell Technologies, Vancouver, CA) to induce morphological changes with subsequent formation of bone-like nodules. Gene expression, and microCT were measured to determine Cbfa1 and Lrp5 gene expression. Matrix was detected using the Alcian Blue (21 days) and Alizarin red (42 days) stains as previously described [Caira et al., 2006]. The culture plates with the myofibroblasts at different treatments/stages will be fixed in neutral buffered formalin at 4°C overnight. Osteogenic media is necessary to induce osteoblastic differentiation in undifferentiated/immature osteoblast precursors and vascular smooth muscle cells [Kirton et al., 2007; Stringa et al., 1995; Tintut et al., 2003].

Statistics

Data presented for each diseased valve as an average of the percent of the internal control. The internal control was GAPDH for the PCR and Actin for the Western Blot. One-way ANOVA was used to examine if there are differences in normalized gene and protein expression among diseased valves and the control valves. Significance of the test statistics is set at 0.05 level.

Results

In vivo Mouse model of Calcific Aortic Valve Disease

To understand if eNOS−/− mice with the BAV phenotype, develops accelerated stenosis earlier than tricuspid aortic valves via the Lrp5 pathway activation, eNOS−/− mice were given a cholesterol diet versus cholesterol and atorvastatin. The Visual Sonics mouse echocardiography
machine was used to screen for the BAV phenotype. Echocardiography hemodynamics was also performed to determine the timing of stenosis in bicuspid vs. tricuspid aortic valves eNOS−/− mice on different diets. **Figure 1** demonstrates the characterization of the eNOS phenotype as defined by histology, and echocardiography. In **Figure 1, Panel A** is the histology for BAV, **Figure 1, Panel B** is the microCT for the eNOS−/− mice hearts on the different diets. The bicuspid valves developed tiny areas of mineralization as indicated by the arrows in the hypercholesterolemic group and less with the cholesterol + Atorvastatin.

Figure 2, demonstrates the characterization of the eNOS phenotype as defined by Li-Cor near infrared imaging and RTPCR of the bicuspid aortic valves and the femurs of the eNOS null mice on the different diets. In **Figure 2, Panel A** is the infrared imaging of the whole mouse 48 hours after injection with the bone tag. Imaging of the whole mouse demonstrated the highest concentration of the Bone Tag in the cholesterol diet mouse with less in the Atorvastatin and minimal in the control mice as shown by the green fluorescence. The red area in the image in the control mouse GI tract is the chlorophyll in the chow diet, which is part of the background that appears red with the NIR imaging. The Bone Tag(Green dye) shows up in the bones of the mice and any other areas of the mouse that is undergoing incorporation of the bone tag. Since the ribs and sternum, block the heart and therefore, do not allow for optimal *in vivo* imaging of the hearts. Individual organs were dissected including the hearts and femurs from the mice to image the tissues *ex vivo*.

The hearts in **Figure 2, Panel B1**, injected with the bone tag are in the top row. The control(Carboxylate) probe injected hearts are in the bottom row. The Pearl Imager then quantifies the amount of Bone Tag uptake into areas of active osteogenesis. The cholesterol hearts increased in the amount of bone tag uptake as compared to the control and Atorvastatin. The p values for the
difference between the control versus cholesterol \(p < 0.00161^* \) and the difference between the cholesterol and cholesterol + Atorv is \(p < 0.01^{**} \). The femurs in Figure 2, Panel C1, injected with the bone tag are in the top row. The control probe injected femurs are in the bottom row. The cholesterol femurs demonstrate increase in active bone formation as compared to the control and the atorvastatin. The \(p \) values for the difference between the control versus cholesterol < 0.08 and the difference between the cholesterol and cholesterol + Atorv is < 0.05**. Table 1 demonstrates the quantification data for the NIR imaging detection of the Bone Tag Fluorochrome and the echocardiographic data demonstrating that the bicuspid aortic valve progresses to a more severe stenosis than the tricuspid aortic valve from the enos\(^{-/-}\) mice on the cholesterol diets. The Atorvastatin attenuates the stenosis present in the bicuspid aortic valves.

Figure 2, Panel B2 and C2, is the semi-quantitative RTPCR from the BAV and femurs respectively. In the BAV as shown in Figure 2, Panel B2 and Table 1, there was no change in the TAV obtained from the eNOS\(^{-/-}\) null mice from the different diets in terms of histology, RTCPR gene expression, and echocardiographic data. The gene expression for the femurs as shown in Figure 2, Panel C2, and Table 1, demonstrated that Runx2, Lrp5, and Wnt3a increased in the cholesterol group and attenuation with atorvastatin. Quantification of the results are shown in Table 1, with the \(p \) value <0.05 considered significant.

In vitro Model of Endothelial-Myofibroblast Cell-Cell Signaling

Isolation of Anionic Mitogenic Activity

Figure 3 demonstrates the isolation and characterization of the mitogenic protein from the conditioned media microenvironment. Endothelial cells were cultured as shown in Figure 3, Panel A, which is a light microscopy photograph of aortic valve endothelial cells isolated from the aortic surface of the aortic valve. The media was obtained from the endothelial cells and then transferred
directly to the myofibroblast cell to determine effects on cell proliferation. The results of the mitogen assays for fractions eluting from a DEAE- Sephadex column are shown in Figure 3, Panel B. It can be seen that the mitogenic activity appeared as a single peak eluting at approximately 0.25 M NaCl. The material eluting from DEAE- Sephadex was then applied to Sephadex G-100; the results of mitogen assays on fractions eluting from such a gel filtration column are shown in Figure 3, Panel C. It can be seen that under these native, non-denaturing conditions the bulk of the mitogenic activity eluted as a peak corresponding to standard proteins of 30-40,000 molecular weight. This material lost all activity when heated to 100°C for 5 minutes; disulfide bond reduction with dithiothreitol also abolished all mitogenic activity; and treatment with trypsin destroyed all activity, implicating a protein structure. This data demonstrates the importance of the first corollary for defining a tissue stem cell niche: the physical architecture necessary for the signaling mechanisms. The endothelial lining cell along the aortic surface of the aortic valve signals to the myofibroblast cells that are resident below the endothelial cells to activate the disease process.

Oxidative Stress: The Role of Endothelial Nitric Oxide Synthase in Aortic Valve Endothelial Cells

The second corollary for identifying a stem cell niche is to define the gradient responsible for the proliferation to differentiation process. To answer this question of the role of oxidative stress and nitric oxide in the aortic valve, *in vitro* experiments were performed to determine eNOS enzymatic and protein regulation in the presence of lipids and attenuation with Atorvastatin to confirm the importance of eNOS enzymatic function *in vitro*. Figure 4 demonstrates the eNOS regulation in the endothelial cells in the presence of lipids with and without Atorvastatin. A number of standard nitric oxide assays were performed to measure eNOS functional activity. Figure 4, Panel A1, tests for eNOS enzymatic activity in the aortic valve endothelial cells (AVEC) in the presence of LDL with and without Atorvastatin. eNOS enzymatic activity was decreased in the
The presence of lipids and Atorvastatin improved functional enzyme activity. **Figure 4, Panel A2.** shows results for tissue nitrites measured in the endothelial cells providing indirect evidence for the enzyme activity. There was an increase in nitrites with lipid treatments and attenuation with Atorvastatin. This increase in nitrite levels correlates with a decrease in the functional activity of the eNOS enzyme in the aortic valve endothelium.

The proof of principle experiment to test the importance of eNOS enzymatic activity is an overexpression experiment to determine if eNOS is able to inhibit cell proliferation, an early cellular event in the development of aortic stenosis[1]. Experiments were performed to overexpress eNOS to determine if eNOS overexpression in the aortic valve endothelial cells would regulate cell proliferation. The in vitro myofibroblast cells were directly transduced with an eNOS adenoviral gene construct. Thymidine incorporation was measured to test if overexpressing eNOS can inhibit cellular proliferation. **Figure 4, Panel A3.** eNOS overexpression inhibits the cell proliferation in the oxidized LDL treated cells induced as compared to the LacZ control treated cells.

Experiments were performed to localize the expression of Caveolin1 and eNOS in the aortic valve endothelial cell caveolae. **Figure 4, Panel B1.** demonstrates that Caveolin-1 is upregulated in the lipid treated cells and decreases with atorvastatin treatment with no change in the eNOS protein expression as shown by Western Blot. **Figure 4, Panel B2.** demonstrates the ultrastructural evidence by immunogold labeling for eNOS and Caveolin-1 present in the aortic valve endothelial cells in caveolae, similar to previously reported data[1, 2]. This caveolin1 upregulation is indirect evidence in addition to the direct data of a decrease in the enzyme activity, that caveolin-1 may play a similar role in AVEC found in the aortic valve similar to the vascular endothelium.
Experiments were performed to determine if Wnt3a secretion changes in the microenvironment of the aortic valve endothelial cells with and without lipids. Figure 4, Panel C, demonstrates that Wnt3a protein concentration in the conditioned media in the presence of LDL with and without Atorvastatin. There is a significant increase in the protein with the lipids and attenuation of this protein secretion with the Atorvastatin treatments. This experiment tests the effects of lipids regulating the development of a Wnt3a gradient in the microenvironment in parallel with the decreased eNOS functional activity. If LDL increases Wnt3a secretion into the conditioned media or the microenvironment of the diseased aortic valve, this further contributes to the activation of the canonical Wnt pathway in the subendothelial space of the aortic valve. Figure 4, Panel D, demonstrates the Dkk1 expression in the myofibroblast cell after treatment with the conditioned media from the endothelial cells. Dkk1 is the inhibitor of Lrp5 receptor, which is further evidence of the mechanism of Atorvastatin’s potential role inhibiting valve calcification via upregulation of Dkk1.

Myofibroblast Cell Differentiating to Osteogenic Bone

The final experiment tests the myofibroblast cell’s ability to differentiate to mineralized bone via upregulation of the Lrp5 receptor. Myofibroblasts were treated with three different conditions to determine the microenvironment necessary to activate the Lrp5 pathway of bone formation. The initial set of conditions includes treatment of the myofibroblasts with osteogenic differentiating media. This osteogenic differentiation media provides the mineralizing microenvironment necessary for the calcification of bone mineralization[Stringa et al., 1995]. The cells were treated with osteogenic media in Figure 5, Panel A, over time the myofibroblast cells stain positive for Alcian blue, indicating the transformation to a chondrocyte phenotype. After 6 weeks, the cells begin to mineralize and form bone as implicated with the positive stain for Alizarin read as shown in Figure 5, Panel B. The microCT indicates mineralization in this in vitro model.
with upregulation of Runx2 and Lrp5 the key regulators of Wnt regulation of bone formation, **Figure 5, Panel C and D.**

Next the cells were treated with LDL with and without Atorvastatin directly shown in **Figure 5, Panel E.** When the cells were treated with lipids directly there was no gene expression of the Lrp5 receptor and low level expression of Runx2 and osteopontin. **Figure 5, Panel F,** demonstrates the gene expression in myofibroblast cells treated with conditioned media from aortic valve endothelial cells. The conditioned media was produced in the presence of LDL with and without Atorvastatin and in the presence of lipids Wnt3a is secreted into the media. The AEC conditioned media is required to upregulate the Lrp5 gene in this model of endothelial/mesenchymal cross talk. The conditioned media from the endothelial cells treated with lipids induced the Lrp5 gene expression and mildly attenuated with Atorvastatin therapy. **Figure 5, Panel G and H,** demonstrates the final set of conditions, the response to mechanical force by measuring the Lrp5 expression in the myofibroblast cells with cyclic stress. The Lrp5 is expressed after the application of the cyclic stretch, and is further increased with the application of the cyclic stretch and the Conditioned media treated cells. This data in combination with previously published data[Kirton et al., 2007; Rajamannan et al., 2005a; Shao et al., 2005] indicates that LDL and Pressure are both necessary for the upregulation of the Lrp5/Wnt3a pathway[Rajamannan, 2011b; Rajamannan, 2011c]

The model proposed in the study as described in **Figure 6,** provides the cellular architecture for the development of this disease process. The stem cell niche is a unique model for the development of an oxidative stress communication within the aortic valve endothelium. As shown in **Figure 6** oxidative stress contributes to the release of Wnt3a into the subendothelial space to activate Lrp5/Frizzled receptor complex on the extracellular membrane of the myofibroblast. This trimeric complex then induces glycogen synthase kinase to be phosphorylated. This
phosphorylation event causes β-catenin translocation to the nucleus. β-catenin acts as a coactivator of osteoblast specific transcription factor Runx2 to induce mesenchymal osteoblastogenesis in the aortic valve myofibroblast cell.

Discussion

This study demonstrates that in the presence of oxidative stress environment and abnormal mechanical forces the aortic valve develops a mineralizing phenotype via the Lrp5/Wnt3a signaling pathway. For years, CAVD was thought to be due to a degenerative process but recent Working Group by NHLBI, has concluded based on the scientific progress in the field, that the biology is an active process[Rajamannan et al., 2011]. The cell involved in the secretion of Wnt3a is the aortic valve endothelial cell which signals to the adjacent subendothelial cell the myofibroblast cell. The myofibroblast cell is the mesenchymal cell, which has the ability to differentiate to bone, fat and or cartilage[Chen et al., 2009; Liu et al., 2007]. The results presented in this study demonstrate that a tissue stem cell niche is necessary for the disease mechanism. The physical proximity of the cells, the mechanical pressure and the hypercholesterolemic environment play a role for the upregulation of the Lrp5 receptor to signal the myofibroblast cell to form bone.

Adult tissues stem cells are a population of functionally undifferentiated cells, capable of (i) homing (ii) proliferation, (iii) producing differentiated progeny, (iv) self-renewing, (v) regeneration, and (vi) reversibility in the use of these options. Within this definition, stem cells are defined by virtue of their functional potential and not by a specific observable characteristic. This data is the first to implicate a cell-cell communication between the aortic valve endothelial cell and the myofibroblast cell to activate the canonical Wnt pathway. Lrp5/6 is important in normal valve development[Hassler et al., 2007; Hurlstone et al., 2003], in this stem cell niche, reactivation of latent Lrp5 expression[Caira et al., 2006; Rajamann, 2011b; Rajamann et al., 2005a], regulates osteoblastogenesis in these mesenchymal cells. The negative bone formation in previously
published study hypercholesterolemic Lrp5-/- aortic valves\cite{Rajamannan, 2011b} demonstrate the specificity of the neural crest cardiac derived cells to mineralize via the Lrp5.

The aortic valve endothelial cell communicates with the myofibroblast cell to activate the myofibroblast to differentiate to form an osteoblast-like phenotype\cite{Rajamannan et al., 2003b}. This concept is similar to the endothelial/mesenchymal transition critical in normal valve development\cite{Paruchuri et al., 2006}. This data fulfills these main corollaries of the plausibility of a tissue stem cell niche responsible for the development of valvular heart disease. Within a stem cell niche there is a delicate balance between proliferation and differentiation. Cells near the stem-cell zone are more proliferative, and Wnt likely plays a role in directing cell differentiation. Stem cell behavior is determined by the stem cell’s neighboring cell, which in the valve is the endothelial cell. This assumption is aimed at simply describing the fact that cytokines, secreted by cells into the micro-environment are capable of activating quiescent stem cells into differentiation\cite{de Haan et al., 1996}.

The main postulate for this corollary stems from the risk factor hypothesis for the development of aortic valve disease and the role of mechanical force mechanism of the Lrp5 receptor. If traditional atherosclerotic risk factors are necessary for the initiation of disease, then these risk factors are responsible for the gradient necessary for the differentiation of myofibroblast cells to become an osteoblast calcifying phenotype \cite{Kirton et al., 2007; Mohler et al., 1999; Osman et al., 2006; Rajamannan et al., 2005a; Shao et al., 2005; Tintut et al., 2003; Wada et al., 1999}. If traditional risk factors are responsible for the development of valvular heart disease, then an oxidative stress mechanism is important for the development of a gradient in this niche. Nitric oxide is important in terms of the mechanism in adult disease processes and also in the developmental abnormalities such as the bicuspid aortic valve phenotype in the eNOS null mouse. We have previously published that eNOS is regulated in the aortic valve in an experimental
hypercholesterolemia model of valvular disease[Rajamannan et al., 2005b]. A key regulator of eNOS function is caveolin-1 which is expressed in aortic valve endothelial cells[Rajamannan et al., 2002a]. Caveolin-1 upregulation in the presence of lipids inactivates eNOS enzymatic function and further promotes oxidative stress [Garcia-Cardena et al., 1997; Garcia-Cardena et al., 1996].

A well defined mechanism to inactivate eNOS enzymatic activity is functional binding of eNOS with caveolin1 in the presence of lipids[Blair et al., 1999; Feron et al., 1999]. This data demonstrates that eNOS functional activity is decreased in the aortic valve endothelial cells and is regulated similarly to vascular endothelial cells via Caveolin1. Furthermore, In the presence of lipids, Wnt3a is secreted and binds to Lrp5 and Frizzled on the extracellular membrane to regulate the osteoblast gene program. Atorvastatin inhibits the Lrp5 mechanism by an increase in the Dkk1 protein expression in the myofibroblast cells. This developmental disease process follows a parallel signaling pathway that has been observed in the normal embryonic valve development that has been well delineated by previous investigators[Paruchuri et al., 2006]. A similar cell-cell communication is necessary for the development of valve disease. This study provides the correlates described in the mathematical modeling by Agur[Agur et al., 2002]. The model of Agur, defines the corollaries necessary to identify a stem cell niche, first the physical architecture of the stem cell niche and second the gradient necessary to regulate the niche. In the BAV the gradient is defined by the niche’s microenvironment. The initiation of event of oxidative stress inhibits normal endothelial nitric oxide synthase function, in turn induces Wnt3a secretion to activate bone formation within the valve [Kirton et al., 2007; Rajamannan et al., 2005a; Shao et al., 2005]. This data is the first to implicate a cell-cell communication between the aortic valve endothelial cell and the myofibroblast cell to activate the canonical Wnt pathway. Lrp5 is important in normal valve development[Hurlstone et al., 2003], in this stem cell niche, reactivation of latent Lrp5 expression[Caira et al., 2006; Rajamannan et al., 2005a], regulates osteoblastogenesis in the
myofibroblast mesenchymal cells. The two corollary requirements necessary for an adult stem cell
niche is to first define the physical architecture of the stem-cell niche and second is to define the
gradient of proliferation to differentiation within the stem-cell niche. This concept is similar to the
endothelial/mesenchymal transition critical in normal valve development[Paruchuri et al., 2006].

The goal of this study is to determine the two corollaries to define the role of a tissue stem
cell niche in CAVD. The corollaries necessary to define a tissue stem cell niche: 1) Physical
architecture of the endothelial cells signaling to the adjacent subendothelial cells: the myofibroblast
cell. 2) Defining the oxidative-mechanical stress gradient necessary to activate Wnt3a/Lrp5 in this
tissue stem niche to induce disease. Targeting the Wnt pathway in valvular calcification presents a
novel approach towards treating this disease in the future.

Acknowledgements

This work was completed with the support of 5R01HL085591 and 3R01HL085591S1. The
author is the inventor on a patent for methods to slow progression of valvular heart disease. This
patent is owned by the Mayo Clinic and the author does not receive any royalties from this patent.
REFERENCES

FIGURE LEGENDS:

Figure 1. Histology of the aortic valves from the eNOS\(^{-/-}\) bicuspid mice

Panel B. MicroCT of the of eNOS\(^{-/-}\) aortic valves on the control Panel B1, Cholesterol Panel B2 and the Cholesterol + Atorvastatin Diets Panel B3.

Figure 2. Characterization of the Bicuspid Aortic valve and femurs in eNOS null mice by licor infrared imaging. Left column, control diet; middle column, cholesterol diet; right column, cholesterol diet plus atorvastatin. In each panel, the aortic valve leaflet is in the center. (All frames 20X magnification) *p<0.001 for control compared to cholesterol, **p<0.001 for cholesterol compared to cholesterol + Atorvastatin.

Panel A. Infrared imaging of the entire mouse on each diet.

Panel B1. Infrared imaging of the bicuspid hearts, Panel B2, RTPCR on the aortic valves for Wnt3a, Lrp5, Cyclin1, OP, Runx2, GAPDH.

Panel C1. Infrared imaging of the bicuspid hearts, Panel C2, RTPCR on the femurs for Wnt3a, Lrp5, Cyclin1, OP, Runx2, GAPDH.

Figure 3. Protein Isolation and Characterization of Aortic Valve Endothelial Cell Conditioned Media

Panel A. Light Microscopy for Aortic Valve Endothelial Cells.

Panel B. Cell Proliferation for fractions eluting from a DEAE- Sephadex column. (p<0.001)

Panel C. Fractions from DEAE- Sephadex to characterize weight with Sephadex G-100. (p<0.001)
Figure 4. Evidence for eNOS regulation and Wnt3a Secretion from Aortic Valve Endothelial Cells. *p<0.001 for control compared to cholesterol, **p<0.001 for cholesterol compared to cholesterol + Atorvastatin.

Panel A. eNOS enzymatic activity in the aortic valve endothelial cells (AEC) in the presence of LDL with and without atorvastatin.

Panel B1. Caveolin-1 and eNOS protein expression isolated from the lipid with and without atorvastatin treated cells as shown by Western Blot.

Panel B2. Electron microscopy immunogold labeling for eNOS and Caveolin-1 localize in the aortic valve endothelial cells in caveolae.

Panel C. Wnt3a Immunoprecipitate from Conditioned Media treated with LDL with and without Atorvastatin.

Panel D. Dkk1 protein expression from the myofibroblast cells treated with conditioned media with lipid and with and without atorvastatin treated cells as shown by Western Blot.

Figure 5. Osteogenic Mineralization Assays.

Panel A. The myofibroblast cells stain for Alcian blue, indicating a cartilaginous phenotype treated with osteogenic media.

Panel B. The myofibroblast cells stain positive for Alizarin red, indicating an osteoblast phenotype treated with osteogenic media.

Panel C. RTPCR for Cbfa1 and Lrp5, in the myofibroblast cells treated with osteogenic media.

Panel D. MicroCT of the calcifying cells indicating mineralization present in the cells.

Panel E. RTPCR for Lrp5, Cbfa1 and osteopontin in the myofibroblast cells treated with directly with lipids with and without Atorvastatin.
Panel F. RTPCR for Lrp5, Cbfa1 and osteopontin in the myofibroblast cells treated with conditioned media from Endothelial cells with lipids with and without Atorvastatin.

Panel G. RTPCR for Lrp5, Cbfa1 and osteopontin in the myofibroblast cells treated with cyclic stretch and with lipids with and without Atorvastatin.

Panel H. RTPCR for Lrp5, Cbfa1 and osteopontin in the myofibroblast cells treated with cyclic stretch and conditioned media from Endothelial cells with lipids with and without Atorvastatin.

Figure 6. Schematic Modeling for Calcification in the Aortic Valve Stem Cell Niche.
Figure 1

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Cholesterol</th>
<th>Chol + Atorv</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eNOS Bicuspid Masson Trichrome</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eNOS MicroCT</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
</tbody>
</table>
Figure 3

A

B

C

CPM incorporated, $\times 10^{-2}$

Elution volume, ml

Serum-free medium

CPM incorporated, $\times 10^{-3}$

NaCl, M

Elution volume, ml
Figure 4

A1: eNOS Enzyme Activity

- Control
- LDL
- LDL + A

A2: Cell Nitrite Data

- Control
- LDL
- LDL + A

A3: H3 Thymidine Incorporation

- Control
- LDL
- Adenos + LDL
- Adiac + LDL

B1: Caveolin-1

- Control
- LDL+10
- A10

B2: Enos

B3: 100 nm

C: 80%

- Serum-free
- LDL10
- LDL10 + A10
- A10

D: DKK1

- LDL
- LDL + Atorvastatin
- Atorvastatin

α actin
Figure 6
TABLE 1. Quantification of the RTPCR, LiCor Bone Probe Measurements in the Valves and Femurs From the eNOS Bicuspid Mice

<table>
<thead>
<tr>
<th>Echocardiographic data</th>
<th>Control</th>
<th>Cholesterol</th>
<th>Cholesterol + atorv statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicuspid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF%</td>
<td>64.64 ± 10</td>
<td>60.00 ± 10</td>
<td>53.00 ± 8</td>
</tr>
<tr>
<td>Peak jet velocity</td>
<td>1.30 ± 0.25</td>
<td>3.93 ± 0.37</td>
<td>1.63 ± 0.75^**</td>
</tr>
<tr>
<td>Tricuspid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF%</td>
<td>67.11 ± 9</td>
<td>59.54 ± 8</td>
<td>56.31 ± 9</td>
</tr>
<tr>
<td>Peak jet velocity</td>
<td>1.07 ± 0.23</td>
<td>1.57 ± 0.17</td>
<td>1.51 ± 0.21</td>
</tr>
<tr>
<td>Quantification of gene expression: bicuspid aortic valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runx2</td>
<td>0.456 ± 0.044</td>
<td>0.562 ± 0.0573</td>
<td>0.467 ± 0.0269</td>
</tr>
<tr>
<td>Cyclin</td>
<td>0.575 ± 0.103</td>
<td>1.057 ± 0.714</td>
<td>1.066 ± 0.379</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.350 ± 0.204</td>
<td>0.590 ± 0.218</td>
<td>0.398 ± 0.242</td>
</tr>
<tr>
<td>Lp5</td>
<td>0.729 ± 0.271</td>
<td>1.057 ± 0.112</td>
<td>0.788 ± 0.262^**</td>
</tr>
<tr>
<td>Wnt3a</td>
<td>0.399 ± 0.0632</td>
<td>0.690 ± 0.134</td>
<td>0.387 ± 0.156^**</td>
</tr>
<tr>
<td>Quantification of gene expression: tricuspid aortic valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runx2</td>
<td>0.108 ± 0.0482</td>
<td>0.196 ± 0.102</td>
<td>0.081 ± 0.0114</td>
</tr>
<tr>
<td>Cyclin</td>
<td>0.114 ± 0.0487</td>
<td>0.331 ± 0.252</td>
<td>0.104 ± 0.0122</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.212 ± 0.0654</td>
<td>0.413 ± 0.288</td>
<td>0.123 ± 0.0225</td>
</tr>
<tr>
<td>Lp5</td>
<td>0.839 ± 0.375</td>
<td>1.215 ± 0.168</td>
<td>1.15 ± 0.329</td>
</tr>
<tr>
<td>Wnt3a</td>
<td>0.308 ± 0.0189</td>
<td>0.229 ± 0.0193^**</td>
<td>0.261 ± 0.0541^**</td>
</tr>
<tr>
<td>Quantification of gene expression: femurs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runx2</td>
<td>0.118 ± 0.00952</td>
<td>0.160 ± 0.0305^*</td>
<td>0.116 ± 0.0196^**</td>
</tr>
<tr>
<td>Cyclin</td>
<td>0.752 ± 0.624</td>
<td>0.763 ± 0.436</td>
<td>0.529 ± 0.245</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.406 ± 0.0889</td>
<td>0.524 ± 0.3931^*</td>
<td>0.455 ± 0.100</td>
</tr>
<tr>
<td>Lp5</td>
<td>0.241 ± 0.0955</td>
<td>0.213 ± 0.0479^*</td>
<td>0.234 ± 0.100^**</td>
</tr>
<tr>
<td>Wnt3a</td>
<td>0.196 ± 0.0126</td>
<td>0.256 ± 0.0222^*</td>
<td>0.180 ± 0.0539^**</td>
</tr>
<tr>
<td>Quantification Li-Cor molecular imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearts</td>
<td>177 ± 0.03</td>
<td>471 ± 0.08^*</td>
<td>281 ± 0.02^**</td>
</tr>
<tr>
<td>Femurs</td>
<td>3.129 ± 0.02</td>
<td>4.265 ± 0.02^**</td>
<td>3.105 ± 0.09^**</td>
</tr>
</tbody>
</table>

Quantification of the echocardiographic results of the tricuspid versus bicuspid aortic valves in the eNOS null mice.

^P<0.05 control versus cholesterol.

^**P<0.05 cholesterol versus cholesterol + atorvastatin.