Attachment to extracellular matrices is enhanced in human endometriotic stromal cells: a possible mechanism underlying the pathogenesis of endometriosis

Masatake Adachi, Kaei Nasu*, Akitoshi Tsuno, Akitoshi Yuge, Yukie Kawano, Hisashi Narahara

Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan

ARTICLE INFO

Article history:
Received 16 June 2010
Received in revised form 23 September 2010
Accepted 30 October 2010

Keywords:
Endometriosis
Adhesion
Extracellular matrix
Integrin
Peritoneum
Pathogenesis

ABSTRACT

Objective: Endometriosis is characterized by the ectopic growth of endometrial tissue. One of the first steps to the spread of endometriosis in the peritoneal cavity is the attachment of endometriotic cells to peritoneal surfaces after they have been released into the peritoneal fluid from pre-existing endometriotic lesions. The increased adhesive and proliferative potential of endometriotic cells in response to specific extracellular matrix (ECM) components has been suggested to contribute to the pathogenesis of endometriosis.

Study design: Adhesive properties of endometriotic stromal cells (ECSC) and normal eutopic endometrial cells (NESC) to various extracellular matrix proteins were investigated by in vitro cell adhesion assays. The expression levels of integrins in these cells were also examined by Western blot analysis.

Results: Both ECSC and NESC significantly adhered to collagen type I and collagen type IV. ECSC revealed higher adhesive properties to these ECM proteins than NESC did. ECSC, but not NESC, adhered to fibronectin and laminin. Higher levels integrin of α1, α2, αv, β1, and β3 protein expression were observed in ECSC than in NESC. On the other hand, the levels of integrin α3 and α4 proteins were lower in ECSC than in NESC.

Conclusions: The results suggest that endometriotic cells possess stronger adhesion to ECM proteins, and that increase may be mediated, in part, through integrins. These findings may elucidate one of the mechanisms underlying the formation of peritoneal endometriotic lesions.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Endometriosis, a benign estrogen-dependent disease affecting 3–10% of women of reproductive age, is characterized by the ectopic growth of endometrial tissue, and is associated with pelvic pain, dysmenorrhea, and infertility [1]. Histologically, this disease is characterized by the presence of dense fibrous tissue surrounding the endometrial glands and stroma [2,3]. Although endometriosis and normal eutopic endometrium are histologically similar, distinct molecular differences have been noted between them. These include a variety of anomalies in structure, proliferation, immune components, adhesion molecules, proteolytic enzymes and their inhibitors, steroid and cytokine production and responsiveness, gene expression, and protein production [4]. Such anomalies include, for example, the deficient expression of 17-hydroxysteroid dehydrogenase type 2 [5] and interleukin-1 receptor type 1 [6], decreased expression of HOXA10 [7], aberrant expression of aromatase P450 [8], enhanced contractility [9], and enhanced expression of both interleukin (IL)-6 [10], and B-cell lymphoma/leukemia-2 (Bcl-2) [11] in endometriosis. All of these differences may promote the development and progression of endometriosis.

One of the first steps to the spread of endometriosis in the peritoneal cavity is the attachment of endometriotic cells to peritoneal surfaces after they have been released into the peritoneal fluid from pre-existing endometriotic lesions [12]. Following the initial attachment to the peritoneum, endometriotic cells rapidly implant, invade the extracellular matrix (ECM) beneath the mesothelium, proliferate and form new peritoneal lesions [13–16]. It has been suggested that endometriotic stromal and glandular epithelial cells have two distinct roles: stromal cells are involved in the initial attachment process, and glandular cells are involved in the growth of the endometriotic lesion [15,16]. As the disease develops, these endometriotic cells need to establish cell–cell and cell–ECM interactions with the peritoneal lining by means of adhesion molecules and their ligands. The ECM of the peritoneum contains collagen types I and IV, tenasin, vitronectin, fibronectin and laminin, all of which may be the potential binding targets of endometriotic cells [16–18].
Integrins, a ubiquitous class of cell adhesion molecules, seem to be the major receptors by which cells attach to components of the ECM, such as collagen, laminin, fibronectin, and vitronectin [19,20]. Some integrins also mediate important cell–cell interactions [19–21]. Ligand specificity is determined by pairings of noncovalently associated transmembrane α and β subunits, as well as by the membrane composition and other intracellular conditions (“inside out” signaling) [19,20]. Integrin binding leads to the transduction of intracellular signals that contribute significantly to cell phenotype regulation such as cellular differentiation, cell motility, attachment and cell–cell communication as well as to hormonal responsiveness [21,22]. The transmission of integrin-mediated signals in endometriotic cells may be an important step toward determining which cells are going to adhere and thus contribute to the spread of endometriosis.

In the present study, we investigated the adhesive properties of endometriotic cells to various ECM proteins by applying primary cultures of endometriotic cyst stromal cells (ECSC) and normal eutopic endometrial stromal cells (NESC). We also examined the protein expression of integrins in these two cell types. We discuss herein the mechanisms underlying the progression of endometriosis.

2. Materials and methods

2.1. ECSC and NESC isolation procedure and cell culture conditions

ECSC were obtained from premenopausal patients who had undergone salpingo-oophorectomy or cystectomy for ovarian endometriotic cysts (n = 7, aged 32–41 years). NESC were obtained from premenopausal patients who had undergone hysterectomies for leiomyoma and had no evidence of endometriosis (n = 6, aged 37–43 years). All patients had been free of any hormonal treatments for at least one year prior to the operation. All the specimens were diagnosed as being in the mid to late proliferative phases using a standard histological examination of endometrial tissues. This study was approved by the institutional review board (IRB) of the Faculty of Medicine, Oita University.

ECSC were isolated from ovarian endometriotic tissues by enzymatic digestion as previously described [6]. Briefly, the tissues were minced in Hank’s balanced salt solution and digested with 0.5% collagenase (Gibco-BRL, Gaithersburg, MD, USA) in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco-BRL) at 37 °C for 20 min. The dispersed cells were filtered through a 70 μm nylon mesh to remove the undigested tissue pieces. The filtrated fraction was separated further from epithelial cell clumps by differential sedimentation at unit gravity, as follows. The cells were resuspended in 2 ml of culture medium and layered slowly over 10 ml of medium in a centrifuge tube. The tubes were placed in an upright position at 37 °C and 10 ml of the medium was collected. Finally, the cells were washed four times with 500 ml of PBS. Then, 200 μl of cell stain solution supplied by the manufacturer (Cell Biolabs) was added to each well and incubated for 10 min at room temperature. The stain was then removed and the cells were washed four times with 500 μl of deionized water. After allowing the cells to air dry for 25 min, 200 μl of extraction solution (Cell Biolabs) was added to each well and placed on an orbital shaker for 10 min. The absorbance of the extracted samples was measured at 560 nm by a plate reader. The results were normalized by subtracting the absorbance of the negative controls.

2.2. Assessment of cell adhesion to ECM protein in vitro

Cell adhesion was evaluated using the CytoSelect™ 48-well cell adhesion assay (ECM Array, Cell Biolabs, Inc., San Diego, CA, USA) according to the manufacturer’s protocol. ECSC and NESC were harvested and resuspended in serum-free DMEM containing 0.5% BSA at a concentration of 8 × 10^5 cells/mL. A cell suspension of ECSC or NESC was added to each well coated with fibronectin, collagen type I, collagen type IV, laminin, fibrinogen, or BSA in a volume of 150 μl. Each plate was then incubated at 37 °C in 5% CO2 in air for 90 min. The cells were then washed four times with 250 μl of PBS. Then, 200 μl of cell stain solution supplied by the manufacturer (Cell Biolabs) was added to each well and incubated for 10 min at room temperature. The stain was then removed and the cells were washed four times with 500 μl of deionized water. After allowing the cells to air dry for 25 min, 200 μl of extraction solution (Cell Biolabs) was added to each well and placed on an orbital shaker for 10 min. The absorbance of the extracted samples was measured at 560 nm by a plate reader. The results were normalized by subtracting the absorbance of the negative controls.

2.3. Assessment of the expression of integrin subunits in ECSC and NESC

As shown in Table 1, the expression levels of integrin α and β subunits (α1, α2, α3, αL, αv, β1, and β3) in untreated ECSC and NESC were investigated by Western blot analysis as previously described [6,9]. Most of these integrin subunits examined were chosen because they were recognized as receptors for fibronectin, collagen, laminin, and/or fibrinogen, whereas αL subunit was chosen because it was not related to fibronectin, collagen, laminin, and fibrinogen. ECSC and NESC were cultured on 100 mm dishes until confluence. The cells were then washed with phosphate-buffered saline (PBS), and whole cell extracts were prepared by lysing the cells in lysis buffer (50 mM Tris–HCl, 125 mM NaCl, 0.1% Nonidet P-40, 5 mM ethylenediamine tetraacetic acid, 50 mM NaF, and 0.1% phenylmethylsulfonylfluoride). The suspension was centrifuged at 15,000 rpm for 15 min at 4 °C, and the supernatant was collected. The total protein concentration was quantified using the Coomassie protein assay reagent (Pierce, Rockford, IL, USA). The whole cell protein extract was resolved with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using a 10% polyacrylamide gel under reduced conditions. After transfer to Immobilon-P transfer membrane (Millipore, Bedford, MA, USA), the protein was stained with Ponceau S (Sigma–Aldrich, St. Louis, MO, USA) to verify uniform loading and transfer. Membranes were blocked with 5% skimmed milk (Becton–Dickinson, Sunnyvale, CA, USA) in Tris-buffered saline with Tween 20 (50 mM Tris–HCl, 150 mM NaCl, 0.1% Tween 20, pH 7.4) (TBS-T) overnight and subsequently incubated with primary antibodies [integrin α1 (PB12; Millipore), integrin α2 (2/CD49b; BD Biosciences, San Jose, CA, USA), integrin α3 (42; BD Biosciences), integrin αv (21; BD

Table 1

<table>
<thead>
<tr>
<th>Integrin</th>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1β1</td>
<td>Collagen, laminin</td>
</tr>
<tr>
<td>α2β1</td>
<td>Collagen, laminin, tenasin</td>
</tr>
<tr>
<td>α3β1</td>
<td>Collagen, laminin, fibronectin</td>
</tr>
<tr>
<td>α1Lβ2</td>
<td>Intercellular adhesion molecule (ICAM)-1, ICAM-2, ICAM-3</td>
</tr>
<tr>
<td>αvβ3</td>
<td>Fibronectin, vitronectin, tenasin, fibrinogen, von Willebrand factor</td>
</tr>
</tbody>
</table>
Biosciences), integrin αL (2D7; BD Biosciences), integrin β1 (18/ CD29; BD Biosciences), integrin β3 (BV4; Abcam, Tokyo, Japan), and glyceraldehydes-3-phosphate-dehydrogenase (GAPDH) (Ambion, Austin, TX, USA) at appropriate dilutions for 1 h at room temperature. The membrane was washed three times with TBS-T and incubated with the appropriate horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature. Subsequently, the membrane was washed three times with TBS-T and analyzed by enhanced chemiluminescence (Amersham Pharmacia Biotech, Chicago, IL, USA).

2.4. Statistical analysis

Data are presented as the means ± SD of representative experiments and were analyzed by the Bonferroni/Dunn test with StatView 4.5 (Abacus Concepts, Berkeley, CA, USA). Values of p < 0.05 were considered to indicate statistical significance.

3. Results

The properties of ECSC and NESC adhesion to ECM protein were evaluated by in vitro cell adhesion assays. As shown in Fig. 1, both ECSC and NESC significantly adhered to collagen type I and collagen type IV (p < 0.0001). ECSC showed higher adhesive properties to ECM proteins than NESC (p < 0.0001). ECSC, but not NESC, adhered to fibronectin and laminin. Neither ECSC nor NESC attached to fibrinogen.

To further assess the underlying mechanisms of these observations, expression levels of integrin α1, α2, α3, αv, αL, β1, and β3 subunits in ECSC and NESC were evaluated by Western blot analysis. As shown in Fig. 2, upregulated expression levels of α1, α2, αv, β1, and β3 proteins were observed in ECSC in comparison with NESC. On the other hand, the levels of α3 and αL proteins were lower in ECSC than in NESC.

4. Discussion

The interaction between endometriotic tissue and peritoneum is an important aspect in the initiation and progression of the disease. Several in vitro models with tissue fragments and dispersed cells have been described that mimic the initial processes of the development of endometriotic lesions [15,16,23,24]. In these models, whole explants of peritoneum and monolayer cultures of mesothelial cells grown on ECM were used [15,16,23,25]. Previous reports have demonstrated that both eutopic endometrial stromal cells and endometrial epithelial cells attach to peritoneal mesothelial cells rapidly within 1 h, and transmesothelial invasion occurs within 18–24 h [15,26–28]. Another report has found that this process is mediated predominantly by endometrial stromal cells [15]. Furthermore, it has been shown that eutopic endometrial cells adhere preferentially to collagen types I and IV compared to fibronectin and laminin [29]: integrins are suggested to be involved in the attachment of endometriotic cells to the peritoneum [13,29,30]. However, all of these previous studies utilized eutopic endometrial cells instead of endometriotic cells. Therefore, it should be addressed whether or not the characteristics of these two cell types differ.

In the present study, we demonstrated that ECSC had higher adhesive properties to ECM proteins in comparison to NESC. Higher levels of α1, α2, αv, β1, and β3 protein expressions were also observed in ECSC, whereas the levels of α3 and αL proteins were lower in ECSC than in NESC. Evaluation of a large repertoire of integrin subunits is mandatory for the completion of this study, but our preliminary findings suggest that some integrins along the surface of endometriotic stromal cells may have a role in the initial attachment to the peritoneal lining during the progression of endometriosis. It has been proposed that the increased adhesive and proliferative potential of endometriotic cells in response to specific ECM components may be a key feature in the pathogenesis of endometriosis [12]. It has also been demonstrated that eutopic and ectopic endometrial stromal cells from women with endometriosis have aberrant integrin profiles in vitro compared with stromal cells derived from healthy controls [12], which is consistent with our results. These observations suggest that aberrant integrin expression in ECSC is involved in the pathogenesis of the increased adhesive properties of endometriotic tissues and cells.

Abnormal regulation of cell–cell and cell–matrix interactions, including aberrant integrin expression in endometriosis, has repeatedly been demonstrated from the viewpoint of the development and progression of the disease [13,31–34]. Increased expression of integrin subunits α4 and α5 has been reported in endometriotic epithelial cells [33]. Increased expression of integrin subunits α3 [32], α5 [33], and β1 [32] has been reported in ECSC, whereas decreased expression of integrin subunits α6 has been reported in ECSC [32]. A loss of cyclin in the expression of epithelial αvβ3 also has been noted [32]. Most of these findings were consistent with our results. The picture that arises from these works is, however, only beginning to become clear and is still far from being consistent or elucidative.

In addition to the integrin family, adhesion molecules, such as cadherin, selectin, the immunoglobulin superfamily and CD44, have been suggested to play roles in the adhesion of endometriotic tissue to develop additional peritoneal lesions [26,33,35–37]. For

![Fig. 2. Protein expression of integrin α1, α2, α3, αv, β1, and β3 subunits in ECSC and NESC. The expression levels of these integrins were investigated by Western blot analysis. The expression of GAPDH was also evaluated as internal controls. Representative results are shown.](image-url)
example, P-cadherin has been demonstrated to be the predomi-
nant cadherin subtype present in the peritoneum [35]. Using
immunochemistry, Van der Linden et al. [37] demonstrated P-
cadherin expression in endometriotic lesions as well as in eutopic
endometrium. P-cadherin mRNA levels in endometriotic lesions
were significantly greater than those observed in the correspond-
ing eutopic endometrium [35]. On the other hand, N-cadherin was
constantly expressed in peritoneal endometriosis and peritoneal
mesothelial cells [36]. The expression of P-cadherin and N-
cadherin in both endometriotic lesions and peritoneum suggests
that these cadherins may play central roles in the development of
endometriosis by mediating endometrial–peritoneal cell interac-
tions in a homophilic manner [36,37].

In summary, we demonstrated here that ECSC had higher
adhesive properties than NESC to ECM proteins. Aberrant integrin
expression in ECSC is thought to be involved in this phenomenon. It
is possible that endometriotic cells escape the pre-existing
peritoneal lesions and seed new lesions at other sites within the
peritoneal cavity through integrin-ECM-mediated cell adhesion.
Integrin-mediated ECSC–ECM interactions may trigger the signal
transduction pathways for subsequent cell proliferation, activa-
tion, differentiation, and invasion that are necessary for disease
progression [5,6,8–11]. Alternatively, one way to prevent the
progression of peritoneal endometriosis is to minimize the disease
adhesion by inhibiting the adherence of endometriotic cells or
tissue to the peritoneal lining. Further investigations into the
integrin–ECM interactions may provide insights into the crucial
pathological steps in the development of endometriosis.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science (no.
20591920 to K. Nasu).

References

[2] Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and
adenomyotic nodules of the rectovaginal septum are three different entities.
Y Acad Sci 2001;943:131–47.
Investig 2001;8:299–304.
[10] Tseng JF, Ryan IP, Milam TD, et al. Interleukin-6 secretion in vitro is up-
from women with endometriosis have increased adhesion and proliferative
capacity in response to extracellular matrix components: towards a mecha-
[12] Van der Linden PJJ, de Goeij AFPM, Dunselman GAJ, Van der Linden EP,
Ramaekers FC, Evers JL. Expression of integrins and E-cadherin in cells from
mesotrial, endometrium, peritoneal fluid, peritoneum, and endo-
[14] Witz CA, Montoya-Rodriguez IA, Schenken RS. Whole peritoneal explants—a
[15] Griffiths JS, Rodgers AK, Schenken RS. Reviews: in vitro models to study the
[16] Wild RA, Zhang RJ, Medders D. Whole endometrial fragments form character-
istics of in vivo endometriosis in a mesothelial cell co-culture system: an in
vitro model for the study of the histogenesis of endometriosis. J Soc Gynecol
[18] Zhang RJ, Wild RA, Ojago JM. Effect of tumor necrosis factor-α on adhesion of
human endometrial stromal cells to peritoneal mesothelial cells: an in vitro
Mesothelial cell-associated hyaluronic acid facilitates endometrial stromal
RS. Culture of menstrual endometrium with peritoneal explants and meso-
thalial monolayers confirms attachment to intact mesothelial cells. Hum
analysis of transmuesosal invasion by endometrial stromal and epithelial
Mesothelial cell-associated hyaluronic acid facilitates endometrial stromal
RS. Culture of menstrual endometrium with peritoneal explants and meso-
thalial monolayers confirms attachment to intact mesothelial cells. Hum
adhesion molecules in endometrium and endometriosis. Br J Obstet Gynaecol
alpha 3 and alpha 6 are differentially expressed in endometrium and endo-
[26] Belardi A, Donnez J, Nisolle M, Fardani MT. Localization of laminin, fibronectin,
E-cadherin, and integrins in endometriosis and endometriosis. Fertil Steril
[27] Robey PA, Vogel C, Reidor M, Schindler AE, Winterhager E. Expression pattern
[28] Chen GT, Tai CT, Yeh LS, Yang TC, Tsai HD. Identification of the cadherin
subtypes present in the human peritoneum and endometriotic lesions: po-
CD44 improves in human endometrium and peritoneal endometriosis. Acta
expression in human endometrium and endometriosis. Gynecol Obstet Invest